Vortrag: Prof. Dr. Walter Krämer, FB Statistik
Um Daten oder auch die Realität zu beschreiben und später in Form einer Publikation wiederzugeben sind fünf wichtige Schritte notwendig (siehe Schaubild).
1. Definition
2. Erhebung
3. Aufarbeitung
4. Induktion
5. Präsentation
Jeder Schritt für sich bietet Möglichkeiten (gewollt) oder auch Fallen (ungewollt), welche auf das Endergebnis entscheidenden Einfluß haben und dieses enorm verfälschen können. Im Folgenden werden die einzelnen Schritte kurz beschrieben und eine Auswahl möglicher Fehler vorgestellt.
1. Definition
Wie wichtig die Definition der benutzten Parameter ist macht allein folgendes Beispiele deutlich. Wenn man Krankheit untersuchen will, muß der Begriff "krank" definiert werden. Werden hier etwa Sprachfehler als Krankheit definiert, würden alle Chinesen zur kranken Bevölkerungsschicht gehören, da sie den Buchstaben "r" nicht aussprechen können. Als weiteres Beispiel ist der beliebte Vergleich der nationalen Arbeitslosenquote anzuführen. Diese Quote wird errechnet durch die Anzahl der Arbeitslosen geteilt durch die Anzahl der potentiellen Arbeitslosen. Da der Begriff "Arbeitslose" in vielen Ländern jedoch verschieden definiert ist (in Deutschland ist er bestimmten Restriktionen unterworfen wie etwa älter als 15 Jahre und jünger als 65 Jahre, an einem Arbeitsamt als arbeitslos gemeldet usw.; in den USA ist dagegen jeder arbeitslos der arbeiten will, aber keine Arbeit hat), sind die Ergebnisse schwer miteinander zu vergleichen. Ähnliche Definitionsunterschiede gibt es in vielen internationalen Vergleichen, so daß diese immer mit Vorsicht zu genießen sind
2. Erhebung
Unter diesem Punkt sind die Arbeitsschritte zu verstehen, die zur Erlangung der benötigten Daten dienen. Daß auch der Bereich der Erhebung voller Tücken steckt, soll wieder anhand einiger Beispiele im Bereich "verzerrter Stichproben" erläutert werden. Verzerrte Stichproben sind Erhebungen, in denen eine bestimmte Menge "Überdurchschnittlich" repräsentiert ist.
Beispiel 1:
Bei einer Untersuchung, in der die durchschnittliche Zahl der Kinder in den Familien ermittelt werden sollte, sind als Ergebnis überraschend hohe Werte errechnet worden. Diese Werte kamen dadurch zustande, daß die Stichprobe in Schulen durchgeführt wurde. Hierdurch sind Familien mit Kindern überdurchschnittlich in der Probe vertreten, wogegen Familien ohne Kinder nicht vertreten waren.
Beispiel 2:
Es wurde festgestellt, daß der Beruf des Bundesligaspielers ein sehr gefährlicher ist, da diese alle vor dem 65. Lebensjahr sterben. Wenn man sich die Stichprobe (nämlich die Bundesligaspieler) genauer anschaut, wird man feststellen, daß es noch keinen Bundesligaspieler geben kann, der älter als 65 Jahre ist, da die Bundesliga erst seit 1963 existiert und ein Bundesligaspieler damals etwa 30 Jahre alt war. Neben den "verzerrten Stichproben" gibt es noch weitere Faktoren, die eine Stichprobe beeinflussen und auch gezielt eingesetzt werden können, um später das gewünschte Ergebnis zu erhalten ("getürkte Stichproben"). Für den Bereich von Umfragen kann allein schon die Formulierung einer Umfrage entscheidenden Einfluß auf das Endergebnis haben. Auch die Farbe des Umfragebogens, die Größe des Bogens, Zeit und Ort der Befragung, oder das Auftreten des Fragers sind alles wichtige Punkte, die das Ergebnis einer Umfrage tangieren. Grundsätzlich kann man sagen, daß jede Umfrage, die von einer interessierten Person durchgeführt worden ist, nicht seriös ist.
3. Aufarbeitung
In diesem Arbeitsschritt werden die "klassischen" Berechnungen durchgeführt: wie Mittelwerte, Standardabweichungen und Prozentsätze. Fehler, die hier auftreten sind z.B. die Ermittlung eines falschen Durchschnitts oder die falsche Berücksichtigung von Zeithorizonten bei Vergleichen von Durchschnitten. Dass Durchschnitt nicht gleich Durchschnitt ist, verdeutlicht folgendes Beispiel.
Bei der Frage "Wo reise ich sicherer, im Flugzeug oder mit der Bahn?" kommt man zu folgenden Ergebnissen:
- Bahn: 9 Tote/10Mrd km
- Flugzeug: 3 Tote/10Mrd km
Somit sterben im Durchschnitt mehr Personen in der Bahn als im Flugzeug. Es stellt sich jedoch die Frage, ob die im Nenner benutzte Einheit die Richtige ist, oder ob nicht vielmehr die Zeit, in der ich mich in "Gefahr" befinde, das entscheidende Kriterium darstellt, also besser die Personenkilometer in den Nenner müssen. Danach sieht die Rechnung folgendermaßen aus:
- Bahn: 7 Tote/100Mio h
- Flugzeug: 20 Tote/100Mio h
Hier sieht das Erbebniss genau umgekehrt aus: Der Nenner ist also ein wichtiger Faktor bei Berechnungen von Durchschnitten. Es gibt aber keinen zwingend vorgeschriebenen Nenner. Er ist variabel, je nach dem, was ich aussagen will. Der "Durchschnitt" hat somit unterschiedliche Aussagekraft.
4. Induktion
In diesem Schritt werden u.a. Beobachtungen oder erhobene Daten zusammengeführt, um daraus bestimmte Schlüsse ziehen zu können. Auch dieser Arbeitsschritt ist gespickt mit möglichen Fehlerquellen. Anhand von Beispielen werden nachfolgend typische Fehler ("Unbeabsichtigte Eigentore" und "Schließen von Korrelation auf Kausalität") vorgestellt.
Unbeabsichtigte Eigentore
In einer Zeitschrift des ADAC war die Meldung zu lesen, daß 4 von 10 Toten (Autofahrern) nicht angegurtet waren. Offensichtlich hatte also die Mehrzahl der Toten einen Gurt an. Die Aussage, die der ADAC jedoch machen wollte, war bestimmt nicht die, daß das Fahren mit Gurt gefährlicher ist als ohne Gurt. Der direkte Vergleich dieser gewählten Indikatoren ist so also nicht möglich.
Schließen von Korrelation auf Kausalität
Hier werden mehrere Beobachtungen (X, Y, Z) die gemacht werden, in Verbindung gesetzt mit der Annahme, dass z.B.
- die Beobachtung X die Beobachtung Y verursacht.
Es sind jedoch noch weitere Beziehungen der Beobachtungen möglich:
- Y verursacht X,
- X beeinflusst Y beeinflusst Z beeinflusst wiederum X,
- X und Y haben gleiche Tendenzen (unter Einfluß von Z), beeinflussen sich aber nicht.
Hierzu wieder zwei Beispiele.
Beispiel 1:
Die Bewohner einer Insel glaubten, daß Läuse auf dem Kopf gut für die Gesundheit seien, da sie festgestellt hatten, daß gesunde Bewohner viele Läuse hatten. Die Kausalität ist jedoch umgekehrt. Nur wenn man gesund ist, bleiben die Läuse auf dem Kopf. Bei eventuellen Krankheiten verschwinden diese. "Laus" bedingt somit nicht "Gesundheit", sondern "Gesundheit" bedingt "Laus".
Beispiel 2:
Regelmäßig können wir in der Zeitung lesen, daß die Gefahr an Krebs zu sterben, ständig steigt. Die absoluten Zahlen sagen jedoch genau das Gegenteil aus, nämlich: daß die Wahrscheinlichkeit, an Krebs zu sterben, in allen Altersklassen gesunken ist. Die Variable "Alter" ist hier nicht berücksichtigt worden, und somit ergibt sich ein falsches Bild.
5. Präsentation
Die Präsentation soll die erhobenen Daten oder Beobachtungen in einer Weise aufarbeiten und darstellen, daß sie für den Adressaten verständlich werden. Insbesondere beim Visualisieren von Daten in Diagrammen o.ä., aber auch bei der Präsentation einfacher Aussagen bestehen vielfältige Manipulationsmöglichkeiten, von denen hier nur ein Ausschnitt beschrieben wird.
"sehr genaue Aussagen treffen":
Durch die Präsentation sehr genauer Aussagen wird in der Regel viel Eindruck geschunden. Wer kann aber schon ernsthaft behaupten, daß die BRD genau 61.467.362 Einwohner hat.
"falsche graphische Darstellung":
Bei einer graphischen Darstellung in einem Koordinatensystem bestehen durch Achsenmanipulation (Strecken oder Stauchen einer Achse oder von Teilen einer Achse) vielfältige Möglichkeiten, die Graphik den eigenen Wünschen entsprechend zu verändern.
"Quantitative Maße durch Flächen darstellen":
Die Möglichkeit, Zahlenwerte durch Flächen darzustellen, wird dann zur Manipulation, wenn beide Dimensionen einer Fläche wertproportional dargestellt werden und die Flächen dadurch drastischere Verhältnisse vortäuschen als die "linearen" Zahlenwerte.